
Introduction

AN10221
In-system programming (ISP) with the
Philips P89LPC932 microcontroller

Richard Soennichsen 2003 Sep 08

Philips
Semiconductors

INTEGRATED CIRCUITS

2003-Sep 08 2

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

OVERVIEW
The Philips P89LPC932 Microcontroller is programmable via the following methods:

• In-System Programming (ISP)
• In Application Programming (IAP)
• Parallel Programming

Although this document only describes ISP in detail, the differences between each of the programming methods
are explained below.

In System Programming occurs when an outside device causes the processor, rather than executing its normal
application code, to execute code at a location that contains memory erase and programming routines. This pro-
gramming takes place with the microcontroller in its normal hardware environment. i.e., soldered on a printed circuit
board.

In Application Programming is similar to in system programming described above, but rather than having an exter-
nal device initiate the programming process the normal application code branches to the memory erase and pro-
gram routines. Similar to In System Programming this operation takes place with the microcontroller in its normal
hardware environment.

Parallel Programming requires an external programming device. In general it can only be accomplished on a part
that is not in its normal hardware environment.

In-System Programming (ISP)

As mentioned above the In-System Programming mode allows the microcontroller to be programmed even after it
has been soldered in a printed circuit board. This feature can be used to perform firmware updates at the end of the
production line. Typical applications include adding calibration information or installation of the latest software re-
lease. In-System programming may also be used during product development as a quick and easy way to modify
program code.

All P89LPC932 devices are shipped with a factory “boot-loader” which is programmed into the upper 512 bytes of
sector seven of the code space. This firmware provides the interface between low-level routines in the device,
which perform the requested function (program, erase, etc.), and the serial port. If the user wishes to utilize ISP,
care must be taken to not erase or overwrite the code sector containing the ISP firmware (1C00H to 1FFFH).

Using In-System Programming Hardware Interface

Figure 1 shows that the only hardware needed to connect the LPC932 to a PC’s RS232 port is a simple RS-232
level shifter, such as the Maxim MAX3322.

2003-Sep 08 3

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

Figure 1

While ISP may be accomplished on a PC running a simple terminal emulation program, it is far easier to use one of
the available programs, such as Flashmagic, which incorporate all of the ISP functions.

Entering ISP Mode

There are three ways to enter the ISP mode:

• Via the status bit and boot vector. (Default condition on initial power-up.)
• Through a break detect reset.
• By pulsing the reset pin upon power-up. (Hardware Activation)

Figure 2 shows a flowchart of these alternatives. A more detailed explanation of each follows.

LPC932

RxD

TxD

MAX3322

PC RS232 Port

2003-Sep 08 4

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

Figure 2: ISP Entry Diagram

The Status Bit and Boot Vector

Upon reset, entry into ISP mode is controlled by the state of a status bit that is stored in a reserved location in flash
memory. Following a reset, the device will examine the contents of the status bit, if it is zero, program execution
begins at address 0000H which typically contains user code. If the status bit is not zero, program execution then
begins at the address made up of the boot vector, also stored in a reserved flash memory location, concatenated
with 00H. When new, parts will have the status bit set and the boot vector programmed to 1EH, Thus upon reset
new parts will start execution at address 1E00H; the location of the factory supplied ISP boot loader. For those
applications where the user wishes to start execution at 0000H the status bit can be cleared on a parallel pro-
grammer when the user code is being loaded. The ISP program itself can reset the status bit. If this is done after
application code has been loaded the next reset will result in execution of the user code. The ISP program can also
alter the value of the boot vector e.g., to a location where a custom boot loader resides. However if altered from its
initial, factory set, value, 1EH, it will not be possible to execute the factory boot loader. If the boot vector is
changed to point to a location which does not contain a boot loader a parallel programmer will be needed to reset it
to point to the entry point of an ISP program.

Break Detect Reset

A second mode of entry is through a UART break detect reset. A break condition is defined as a low on RxD for the
length of one frame time. Frame length depends on the particular mode of the UART. In mode one for example a
break condition is defined as ten bit times. When a break is issued RxD is typically held low for multiple frame
times. The break is reported after the first frame that meets the condition of RxD being held low. Note: If a break
condition is created by pulling RxD low with a mechanical switch, and the part is configured with serial interrupts

2003-Sep 08 5

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

enabled, then the RI (receive flag) must be handled in an interrupt service routine or the part will enter an undefined
state.

The method requires that the user’s code initialize the UART. This means enabling the UART and enabling break
detect reset by setting the break enable bit (EBRR) in SFR AUXR1. Once this is done a break condition on the
RxD pin will cause the part to reset and program execution to re-start at the location pointed to by the boot vector.
An example of this user code follows.

void initialize_ISP (void)
{
 SCON = 0x50; //select the Baud Rate Generator as UART baud rate source

 BRGR1 = 0x04; //9600 BAUD at 11.0592 MHz
 BRGR0 = 0x70;

 BRGCON = 0x03; //enable BRG

 AUXR1 |= 0x40; //enable reset on break detect by setting EBRR
}

void UART_ISR(void) interrupt 11
{
 RI = 0; //This is necessary if the break condition is

//created by a mechanical switch and serial interrupts
//are enabled.

}

Hardware activation

This mode of ISP entry is always available regardless of user code or the state of the status bit. (Assuming that the
boot loader code is intact and the boot vector is 1EH) By presenting a timed waveform of low-going pulses (see
Figure 3) to the reset pin after power up, the part will begin code execution at the address pointed to by the boot
vector. This entry mode has the same effect as having a non-zero status byte.

Figure 3

SYMBOL PARAMETER MIN MAX UNIT
tVR RST delay from VDD active 50 - µs
tRH RST HIGH time 1 32 µs
tRL RST LOW time 1 - µs

Table 1: ISP Entry, AC Characteristics

Note: Providing more or less than the required three pulses will result in the device not going into ISP mode.

2003-Sep 08 6

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

Hardware Activation of ISP Mode, an Example

By introducing some low-going pulses to the reset pin after power-up we can put the device into ISP mode. This
assumes that the boot loader is intact and the boot vector is still set to 1EH.

Figure 1 and Table 1 describe the required waveform. A typical application might have a header on the PCB to
accept a pre-made “dongle” that will control power and reset to the P89LPC932. In this example a P87LPC760
microcontroller controls the voltage to the P89LPC932 via a Philips SA57000 voltage regulator and also provides
the pulses to the P89LPC932 reset pin.

The code is written so that, after the “dongle” is plugged onto the application, the LED (two-color) will glow red.
After the button is pushed, power is applied to the P89LPC932 while it is also being held in reset. After a delay the
reset is released, the pulses are sent, and the LED glows green. The P89LPC932 is now in ISP mode. Pressing
the button again puts the P89LPC932 back into reset. Pressing the button again repeats the entry process. (The
application code is listed at the end of this document.)

2003-Sep 08 7

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

Single two-color LED

VCC_To_Micro

Header on Application PCB

1234

Vcc

TxD

R
es

et

U1 LPC760

1
2
3
4
5
6
7

14
13
12
11
10
09
08

P1.7
RST!/P1.5
Vss
X1/P2.1
X2/CLKOUT/P2.0
SDA/INT0!/P1.3
SCL/T0/P1.2

P0.3/CIN1B
P0.4/CIN1A

P0.5/CMPREF
Vdd

P0.6/CMP1
P1.0/TxD
P1.1/RxD

(Pins one and two are normally jumped
together when not programming the
LPC932)

red

U2 SA57000
1
2
3

5

4

Vin
GND
PWRON

Vout

PWROK

Application

green

D2
31

RS-232
Level
Shifter

"Rest of Application"

Vcc

U1 - Philips P87LPC760 Microcontroller

R1

5K Ohms

Pin3 = Reset to LPC932 in application.

Vcc

R2

120 Ohms

R3

120 Ohms

Pin4 = Ground

C1
0.1uF

U2 - Philips SA57000-33D 3.3V Voltage Regulator

Pin2 = Vcc, supply provided by application

PC RS232
Port

Vcc

Pin1 = Vcc to power micro in application

D1
3 1

Socket on "Dongle"

1234

Application Vcc

Philips
P89LPC932

RxD

VCC_To_Micro

V
dd

Figure 3: Hardware activation “dongle” Schematic

Alternatively, with a small amount of additional circuitry, a four-pin header with no jumper is all that is necessary in
the application.

2003-Sep 08 8

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

5K

HEADER

1234

P89LPC932

Reset

Pin 4 - Ground
Pin 3 - Reset
Pin 2 - Vdd
Pin 1 - Vdd Control

Philips BSP254

3

1
2

Vdd

Vdd

Figure 4: Alternative application Design with a four pin header and no jumper necessary.

Figure 5: The Hardware Activation “Dongle”

2003-Sep 08 9

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

Using Flashmagic with the P89LPC932

Flashmagic is a very popular (and free) utility to program many Philips devices, including the P89LPC932. It is
available at http://www.esacademy.com/software/flashmagic/. Upon starting, Flashmagic will attempt to connect to
the device selected. It is normal that a “connection error” message appears as there is probably no device present
in ISP mode or the settings need to be adjusted. Select the correct COM port for your PC, select the P89LPC932
as the device. Now the device needs to be put into ISP mode, if it is a new device it will already be in ISP mode. If
it is not a new device (The status bit is not set) then enter via hardware activation (three pulse) or use the break
detect reset.

Before we use the break condition to enter ISP mode Flashmagic must be configured to use this method to initiate
ISP. Under the menu options/advanced options/ hardware config the “Use DTR and RTS to enter ISP mode” must
be unchecked. (Leaving the box checked configures Flashmagic to use DTR and RTS to produce the signals nec-
essary to enter ISP mode via the hardware activation method. The hardware necessary to implement this must be
used, i.e. the Keil MCB 900 evaluation board.)

Flashmagic will create the break condition for you, select “start bootrom” under the ISP menu and select “send
break condition.

2003-Sep 08 10

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

At this point the device should be in ISP mode. All ISP functions are now available to you including erase, pro-
gram, read status bit and boot vector, security bits, etc.

Note: By default Flashmagic will protect the bootrom code in sector seven. The user may over-ride this setting in
the options/advanced options/ security menu.

Hardware Activation Code ("dongle")

/***
P89LPC932 Hardware Activation code for P87LPC760 based "dongle"

The delays are written for a P87LPC760 running from the internal RC oscillator (6 MHz)

Richard Soennichsen
Philips Semiconductors

September 8, 2003

**/
#include <Reg762.h> //Include file for Raisonance Compiler

#define on 1 //Use these if using the jumper header in the application
#define off 0

//#define on 0 //Use these if powering the P89LPC932 with the MOSFET (alternative design)
//#define off 1

void main(void); //Function Declarations
void init(void);
void msec(int x);
void LED(char led);
void ext0(void) interrupt 0;
void pulse(void);
void rled (bit red);
void gled (bit green);

at 0x93 sbit button; //Button located on P1.3
at 0x85 sbit reset; //Reset control is on P0.5
at 0xA0 sbit vdd; //Vdd control is on p2.0

2003-Sep 08 11

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

at 0x86 sbit rled0; //port pins associated with the RED LED
at 0x90 sbit rled1;
at 0x91 sbit rled2;
at 0xA1 sbit rled3;

at 0x97 sbit gled0; //port pins associated with the GREEN LED
at 0x83 sbit gled1;
at 0x84 sbit gled2;

bit led_status=1, pulse_out = 0; //Initialize LED and pulse control flags

//******** Initialization Routine *****************************
void init(void)

{

P0M1 = 0x00; //Initialize all ports to push-pull mode
P0M2 = 0xFF;

P1M1 = 0x00;
P1M2 = 0xFF;

P2M1 = 0x00;
P2M2 = 0xFF;

P1M1 |= 0x08; //except external interrupt zero which is set to be high
 P1M2 &= 0xF7; //impedance

LED(1); //Turn LED on red
vdd=off; //Turn off Vdd to P89LPC932

 reset = 0; //Hold the P89LPC932 in reset
EX0 = 1; //Enable external interrupts
EA = 1; //Global interrupt enable

}

//************ Main Program Loop ********************************
void main(void)
{
init(); //Initialize

while(1)
{
 if(pulse_out) //If the pulse_out flag is set, send pulses
 pulse(); //send pulses
}

}

//************ LED Control Routine *********************************
void LED(char led)

{
if(led==1) //make red

{
gled(0);
rled(1);

}
else if (led ==0) //make green

{
rled(0);
gled(1);

}
}

//************ LED Blinking Routine ************************
void blink(void)

{
char j=0;
while(j<6)
{

2003-Sep 08 12

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

LED(0);
msec(200);
LED(1);
msec(200);
j++;
}

}

//************* External interrupt (button) Service Routine ***************
void ext0(void) interrupt 0

{

msec(50); //De-bounce
while(button==0) //Wait for button to be released

{
msec(10);

}

if (led_status == 0)
{

led_status = 1; //Turn LED red
pulse_out = 0; //Don't send pulses

}
else

{
led_status = 0; //turn LED green
pulse_out = 1; //send pulses

}
LED(led_status); //Change LED accordingly

}

//*************Pulse Generation Routine *****************************
void pulse(void)

{
char j;

reset = 0; //Hold the P89LPC932 in reset
vdd = on; //Turn on Vdd to the P89LPC932
blink(); //Blink the LED

msec(10); //wait for Vdd to stabilize

 reset = 1; //release reset
 for (j=0; j<10; j++); //Pulse high time
 reset = 0;

for (j=0; j<5; j++); //Pulse low time

 reset = 1; //Repeat two more times
 for (j=0; j<10; j++);
 reset = 0;
 for (j=0; j<5; j++);

 reset = 1;
 for (j=0; j<10; j++);
 reset = 0;
 for (j=0; j<5; j++);

reset = 1;
 msec(2);

LED(0); //Turn LED green
 while (pulse_out); //Wait here until the button is pressed again
 vdd = off; //Button pressed, turn off Vdd to P89LPC932
 reset = 0; //Hold the P89LPC932 in reset
}

//****** Generic Delay ******************************

2003-Sep 08 13

In-System Programming with the P89LPC932 AN10221

Application notePhilips Semiconductors

void msec(int x) //P87LPC760 running from internal RC oscillator (6MHz)
{

int j=0;
while(x>=0)

{
for (j=0; j<300; j++);
x--;

}
}

void gled (bit green)
{

if(green)
{

gled0 = 1;
gled1 = 1;
gled2 = 1;

}
else

{
gled0 = 0;
gled1 = 0;
gled2 = 0;

}
}

void rled (bit red)
{

if(red)
{

rled0 = 1;
rled1 = 1;
rled2 = 1;
rled3 = 1;

}
else

{
rled0 = 0;
rled1 = 0;
rled2 = 0;
rled3 = 0;

}
}

Revision history: 2003-09-08 Revision 02

Definitions
Short-form specification – The data in a short-form specification is extracted from a full data sheet with the same type number and title. For
detailed information, see the relevant datasheet or data handbook.

Limiting values definition – Limiting values given are in accordance with the Absolute Maximum Rating System (IEC134). Stress above one
or more of the li
iting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other
conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods
may affect device reliability.

Application information – Applications that are described herein for any of these products are for illustrative purposes only. Philips Semicon-
ductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers
Life support – These products are not designed for use in life support appliances, devices or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applica-
tions do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes – Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, stan-
dard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, un-
less otherwise specified.

Contact information
For additional information please visit
http://www.semiconductors.philips.com. Fax: +31 40 27 24825

For sales offices addresses send e-mail to:
sales.addresses@www.semiconductors.philips.com

 Koninklijke Philips Electronics N.V. 2003
All rights reserved. Printed in U.S.A

Date of release: 09-03
Document order number: 9397 750 12027

Philips Semiconductors Application note

In-System Programming with the P89LPC932
microcontroller

AN10221

	OVERVIEW
	In-System Programming (ISP)
	Using In-System Programming Hardware Interface
	Entering ISP Mode
	The Status Bit and Boot Vector
	Break Detect Reset
	Hardware activation
	Hardware Activation of ISP Mode, an Example
	Using Flashmagic with the P89LPC932
	Hardware Activation Code ("dongle")
	Definitions
	Disclaimers

